国产美女狂喷水潮在线播放-亚洲一区二区三区乱码在线欧洲-亚洲欧美乱综合图片区小说区-欧美性生交xxxxx久久久-一本一道av无码中文字幕﹣百度

撥號18861759551

你的位置:首頁 > 技術文章 > 顯微鏡和三色染色鏡的分析

技術文章

顯微鏡和三色染色鏡的分析

技術文章

Microscopy and the Analysis of a Trichrome Stain

When imaging biological material, more often than not it is extremely difficult to differentiate between various organelles and tissues. Light scatters differently from each structure, but the change in contrast is so slight it becomes a strain to analyze the specimen. The first triple stain used to increase contrast and improve recognition dates back to 1880. One of the early methods of staining tissues for histology was developed by Claude Pierre Masson, and has since been coined the Masson trichrome stain.

 

Masson's trichrome stain is incredibly effective in differentiating cells and their components from the surrounding connective tissues. One of the most common stain types, which has been used on the dermal tissue sample seen in the images within this article, yields a number of colors where cell nuclei appear dark red, collagen and other tissues appear green or blue, and cell cylasm appear red/purple (Jones, 2010). These stains have been imaged under brightfield and darkfield illumination, and then again with specific filters to selectively focus on the cellular constituents of the epidermis. The primary application for the epidermal trichrome stains is differentiating healthy collagen and muscles from connective tissues onset with tumorigenesis. Typically the tumors proliferate from muscle cells and fibroblasts deep in the dermal tissue (Blitterswijk, 2010).

 

List of Components for Analysis of Trichrome Stain Setup

 

Description

Stock No.

1.

20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective

#46-145

2.

MT-1 Accessory Tube Lens

#54-774

3.

TECHSPEC® Mitutoyo MT-1/MT-2 C-mount Adapter

#58-329

4.

543nm CWL, 22nm Bandwidth, OD 6 Fluorescence Filter

#67-032

5.

605nm CWL, 15nm Bandwidth, OD 6 Fluorescence Filter

#86-356

6.

EO-3112C ½" CMOS Color USB Camera

#59-367

7.

115V, MI-150 Fiber Optic Illuminator

#59-235

8.

4.25" x 3.37" Fiber Optic Backlight

#39-826

 

The image setup consists of a number of components, which are differentiated as optical and imaging components. The imaging products that will be discussed are the camera and illumination, and the optical components that will be discussed include the microscope objective lens and optical filters.

Figure 1: Brightfield Image of Dermal Tissue

 

Figure 2: Darkfield Imaging of Dermal Tissue

 

When comparing Figures 1 and 2, the visual differences are significant. A brightfield image is formed with the illumination source below the sample, and then transmitted light propagates through the sample to the sensor forming a bright, white background with sharp color. A darkfield image is formed by directing light at an oblique angle through the sample, forming a hollow cone of light which is collected by the objective. Darkfield illumination typically yields a dark background with sharp color, but in the case of Figure 2, the collagen and muscle fibers interfered with the light path and caused a blur of light and color. The dark background is hardly evident and only two distinct colors are visible. When analyzing histological stains, brightfield illumination is the preferred technique for lighting a sample.

Figure 3: Brightfield Image of Dermal Tissue filtered with Green

Figure 4: Brightfield Image of Dermal Tissue filtered with Red

 

When comparing Figure 3 with Figure 4, there is once again a significant visual difference. The most obvious feature is the change in color from green to red due to a different hardcoated filter being positioned in the optical path. The less obvious difference is the varying contrast levels caused by the filters at specific regions of the dermal tissue. For example, Figure 3 exhibits a distinct ring at the central region of the cell with additional matter within. In Figure 4, the ring is extremely faint and the internal matter is not visible. With that said, the cell and surrounding dense materials are more evident in Figure 3, whereas the muscle fibers and collagen are more pronounced in Figure 4.

 

Researchers have discovered a number of methods to quickly and accuray diagnose many ailments, such as many forms of cancer. As technologies continue to advance at an increasing rate, the cost of histology analysis will continue to decrease as images and videos can be easily transmitted across the globe. Even with constantly changing technology, the trichrome stain is still one of the most powerful techniques available in the field of histology and diagnostics over 100 years later.

 

Microscopy and the Analysis of a Trichrome Stain

When imaging biological material, more often than not it is extremely difficult to differentiate between various organelles and tissues. Light scatters differently from each structure, but the change in contrast is so slight it becomes a strain to analyze the specimen. The first triple stain used to increase contrast and improve recognition dates back to 1880. One of the early methods of staining tissues for histology was developed by Claude Pierre Masson, and has since been coined the Masson trichrome stain.

 

Masson's trichrome stain is incredibly effective in differentiating cells and their components from the surrounding connective tissues. One of the most common stain types, which has been used on the dermal tissue sample seen in the images within this article, yields a number of colors where cell nuclei appear dark red, collagen and other tissues appear green or blue, and cell cylasm appear red/purple (Jones, 2010). These stains have been imaged under brightfield and darkfield illumination, and then again with specific filters to selectively focus on the cellular constituents of the epidermis. The primary application for the epidermal trichrome stains is differentiating healthy collagen and muscles from connective tissues onset with tumorigenesis. Typically the tumors proliferate from muscle cells and fibroblasts deep in the dermal tissue (Blitterswijk, 2010).

 

List of Components for Analysis of Trichrome Stain Setup

 

Description

Stock No.

1.

20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective

#46-145

2.

MT-1 Accessory Tube Lens

#54-774

3.

TECHSPEC® Mitutoyo MT-1/MT-2 C-mount Adapter

#58-329

4.

543nm CWL, 22nm Bandwidth, OD 6 Fluorescence Filter

#67-032

5.

605nm CWL, 15nm Bandwidth, OD 6 Fluorescence Filter

#86-356

6.

EO-3112C ½" CMOS Color USB Camera

#59-367

7.

115V, MI-150 Fiber Optic Illuminator

#59-235

8.

4.25" x 3.37" Fiber Optic Backlight

#39-826

 

The image setup consists of a number of components, which are differentiated as optical and imaging components. The imaging products that will be discussed are the camera and illumination, and the optical components that will be discussed include the microscope objective lens and optical filters.

Figure 1: Brightfield Image of Dermal Tissue

 

Figure 2: Darkfield Imaging of Dermal Tissue

 

When comparing Figures 1 and 2, the visual differences are significant. A brightfield image is formed with the illumination source below the sample, and then transmitted light propagates through the sample to the sensor forming a bright, white background with sharp color. A darkfield image is formed by directing light at an oblique angle through the sample, forming a hollow cone of light which is collected by the objective. Darkfield illumination typically yields a dark background with sharp color, but in the case of Figure 2, the collagen and muscle fibers interfered with the light path and caused a blur of light and color. The dark background is hardly evident and only two distinct colors are visible. When analyzing histological stains, brightfield illumination is the preferred technique for lighting a sample.

Figure 3: Brightfield Image of Dermal Tissue filtered with Green

Figure 4: Brightfield Image of Dermal Tissue filtered with Red

 

When comparing Figure 3 with Figure 4, there is once again a significant visual difference. The most obvious feature is the change in color from green to red due to a different hardcoated filter being positioned in the optical path. The less obvious difference is the varying contrast levels caused by the filters at specific regions of the dermal tissue. For example, Figure 3 exhibits a distinct ring at the central region of the cell with additional matter within. In Figure 4, the ring is extremely faint and the internal matter is not visible. With that said, the cell and surrounding dense materials are more evident in Figure 3, whereas the muscle fibers and collagen are more pronounced in Figure 4.

 

Researchers have discovered a number of methods to quickly and accuray diagnose many ailments, such as many forms of cancer. As technologies continue to advance at an increasing rate, the cost of histology analysis will continue to decrease as images and videos can be easily transmitted across the globe. Even with constantly changing technology, the trichrome stain is still one of the most powerful techniques available in the field of histology and diagnostics over 100 years later.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 国产裸体xxxx视频在线播放| 国产成人无码av一区二区| 精品国产一区二区三区av 性色| 在线观看国产精品日韩av| 国产白丝无码视频在线观看| 天天射寡妇射| 国产成人av乱码免费观看| 亚洲精品乱码久久久久久不卡 | 色一情一区二| 国产av无码专区亚洲a∨毛片| 色情无码www视频无码区小黄鸭| 午夜性无码专区| 久久亚洲色www成人不卡| 特级a欧美做爰片第一次| www.99热| 精品少妇牲交视频大全| av国内精品久久久久影院| 亚洲男人综合久久综合天堂| 亚洲va中文在线播放免费| 国内嫩模私拍精品视频| 国产xxxx69真实实拍| 一本加勒比波多野结衣| 国产精品久久久久久亚洲影视| 丝袜熟女国偷自产中文字幕亚洲| 四虎精品成人影院在线观看| 欧美最猛黑人xxxx黑人猛交98| 欧美日韩一区二区三区视频播放 | 国产成+人+综合+亚洲欧美| 一 级 黄 色 片免费网站| 日本欧美大码a在线观看| 日日碰狠狠躁久久躁96| 综合亚洲伊人午夜网| 久久久天堂国产精品女人| 蜜臀av午夜一区二区三区| 日本一本二本三区免费| 国产公开久久人人97超碰| 国产成人久久a免费观看| 99久久99久久精品免费看蜜桃| 精品精品国产欧美在线小说区 | 熟妇丰满多毛的大隂户| 国产精品99|